If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3u^2+6u-9=0
a = 3; b = 6; c = -9;
Δ = b2-4ac
Δ = 62-4·3·(-9)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-12}{2*3}=\frac{-18}{6} =-3 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+12}{2*3}=\frac{6}{6} =1 $
| 2(2q-7)=10 | | z=14+2/3 | | x-3/4x=28 | | x²+14x-15=0 | | y³=27 | | k²=225 | | 5x/2÷10=0 | | 8/2(1+3)=x | | 5x+2=7x4 | | 16x-1=5x+3 | | 4-3(z-2)=-34 | | -3/2z+23=1/24 | | 20x=(5-1) | | 3f=8.91 | | 4x+4=-2x+1 | | x^2-10/x-1=-14-x/x-1 | | Y=x^2-7x+1 | | 3x8=33x =3 | | 3x8=383x =3 | | 82=-2+7(2b-2) | | 4^2-4*2*k=0 | | 82=-2+7(2b-3 | | x+16/4=54 | | X+5=2x-17 | | 9/3y=63 | | 5/3x-8=13 | | 2/3x=x-6 | | 2/3x+1-4/x-3=0 | | 2b+4=3b+15 | | (2x+10)+(4x-10)=145 | | 2x+10+4x-10=145 | | x²-4x–9=6x² |